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We present the results of experimental study of a Couette-Taylor system with super-
imposed axial flow and an upper free surface, in the high Taylor number regime.
At large Taylor numbers, when the rotational speed of the inner cylinder increases,
bubbles created near the free surface are distributed throughout the test section and
permit the study of the spatial and temporal properties of turbulent flows using
visualization techniques. In addition to classic travelling Taylor vortices, intermittent
pulses of vortices with higher phase velocities are also observed. These patterns are
described in terms of the rotational speed and the intensity of the throughflow.

1. Introduction

Couette-Taylor instabilities are prototypes for general studies in hydrodynamic
stability and transition to turbulence. Less known are various industrial applications
of these characteristic patterns coupled with an axial flow, such as cooling of rotating
machinery or in continuous chemical reactors. Each pair of vortices can be idealized,
in a first approximation, as a well-mixed batch reactor advected by the axial flow and
without exchange of liquid between the adjacent vortices (figure la). This property
can be useful in liquid-liquid contact devices used in nuclear fuel reprocessing because
it may allow accurate control of the fluid residence time.

In the nuclear fuel cycle, the main steps of the reprocessing are carried out by
liquid extraction cycles (Treybal 1981). Liquid extraction is the separation of the
constituents of an aqueous solution by contact with another insoluble organic liquid.
The purpose of the equipment used for the liquid-liquid operations is to provide
intimate contact between the two fluids for a sufficient time to permit interphase
mass transfer of the energetic elements (uranium and plutonium). The rate of mass
transfer is directly dependent upon the interface surface areca between the phases.
Intense agitation is thus required to generate an emulsion composed of small droplets
(with a diameter smaller than 500 pm), and consequently to increase the rate of mass
transfer; this involves flows characterized by very high Taylor number, T'a. Moreover,
the typical flow rates in a reprocessing plant induce a significant axial flow in such
liquid extraction devices, which implies a relatively high axial Reynolds number, Re.
Such innovative applications to chemical and nuclear engineering follow up original
fundamental problems related to the Couette—Taylor instability for multi-phase flows
and highly turbulent situations.
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FIGURE 1. (a) Ideal flow configuration from a chemical engineering standpoint: each vortex is
considered as a well-mixed reactor axially advected in such a way that the flow can globally be
modelled by an ideal plug flow. (b) Sketch of the prototype.

In the last 30 years, a substantial amount of research has been conducted on
various aspects of Couette—Taylor flows. Recently, there has been increasing interest in
turbulent situations (Marcus 1984 ; Lathrop, Fineberg & Swinney 1992, for example).

In the case of a circular Couette flow with superimposed axial throughput, the flow
patterns are expected to be more complicated due to strong interactions between axial
and rotating flows. In 1990, Biihler & Polifke presented theoretical and experimental
results on the stability and time behaviour of such a case. Concerning mass transfer in
such flows, Ohmura et al. (1997), after Tam & Swinney (1987), focused their attention
on exchanges between the cell boundaries in the weakly turbulent wavy vortex flow.
They found an intercell mixing coefficient depending on the Taylor number but also
on the axial wavelength.

Recently, Wereley & Lueptow (1999) analysed the velocity field of axially moving
Taylor vortex flow using the Particle Image Velocimetry (PIV) technique, and showed
that for low values of the Ta/Re ratio the exchange of fluid between vortices is
relatively important and vice versa. Moreover, like Snyder (1962), Lueptow, Docter
& Min (1992) and Piva et al. (1997), these authors noticed that the phase velocity of
the vortices is greater than the average axial velocity.

Kataoka & Takigawa (1981) investigated the mixing properties of higher turbulent
flows, and showed that the toroidal motion of fluid elements causes highly effective
radial mixing within cellular vortices, whereas the cell boundaries act like barriers
to mass exchanges. In addition, Kataoka, Doi & Hongo (1975) reported a possible
practical application of the axially moving Taylor vortex flow to a liquid—liquid
surface reaction in the range of 0 < Re < 20 and 246 < Ta < 500.

However, as mentioned above, the working constraints in a reprocessing plant lead
to operation in a region of the Taylor/Reynolds numbers map that has been rarely
explored in previous work. Moreover, in the presence of an upper free surface in
the gap, when the rotational speed of the inner cylinder increases, bubbles distribute
throughout the working cell (Shiomi et al. 1993; Djeéridi et al. 1998). These bubbles
become typical tracers and permit the study of the spatial and temporal structures.

In an initial approach to these complex flows, we consider in this paper a single-
liquid flow with bubbles. The present study describes the turbulent bubbly flows
in a Couette-Taylor—Poiseuille system by means of visualization techniques. The
spatial and temporal properties of the vortices are analysed. The results can allow a
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better understanding of combined rotating—axial flow in such a device, and provide
information for modelling this kind of chemical reactor. We also present results
concerning the flow states at previously unexplored (74, Re) values.

2. Experimental methods

The experimental prototype reactor is shown schematically in figure 1(b). The
working cell is composed of a stationary transparent Plexiglas outer cylinder (R, =
8.0cm) and a rotating stainless steel inner cylinder (R;; = 7.5cm and R;; = 7.0cm in
a second run of experiments); the concentric annular gap e is thus 0.5cm (or 1.0cm)
and 1 = R;; /Ry = 0.94 (or 1 = R;»/Ry =~ 0.88). The test section is 60 cm high (L) but
most of the experiments were carried out with a free surface located between 40 and
50cm from the bottom of the device. Its aspect ratio (L/e) is very large. The upper
part of the cell is open to a vent hole. The inner cylinder is rotated by means of an
electric motor and an assembly allowing removal from above. This feature is used in
nuclear engineering because it permits easy maintenance of the moving parts. Both
the motor and the inner cylinder can thus be removed from a highly radioactive zone
located beneath a concrete slab and transferred to a maintenance cell.

The rotational speeds of the inner cylinder are n € [40 ;2200 r.p.m. (revolutions
per minute)] in the case of e = 0.5cm and n € [40;3000r.p.m.] when e = 1.0cm.
Water supplied from a vessel is pumped into the device through a pipe at flow rates
of 0 € [0;25x107*m?s7!] (0-9001h~!). As the experimental test-bed pump can
ensure high capacity flows but is unsuitable for smaller ones, the [0;3001h~!] range
is not studied in this paper. Taking into account the effects of the rising temperature,
these external conditions correspond, in the case of e = 0.5cm, to Taylor number
ranges between 40 and 3.5 x 10* and to axial Reynolds numbers between 0 and 560.
When e = 1.0cm, these numbers vary respectively within the [40 ;10°] and [0 ;590]
ranges. The Taylor and Reynolds numbers are defined as follows:
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where Q2 is the inner-cylinder rotation speed and v the kinematic viscosity.

In the gap, the liquid is ejected from the pipe and impinges on the inner cylinder. It
flows down the rotating wall and reaches the free surface. It then crosses the reactor
and is finally ejected from the device through a central hole. However, the rotating
surface at the bottom of the inner cylinder induces a strong recirculation current that
can hinder the main outflow. Blades were added at the bottom of the static vessel to
let the fluid flow out of the reactor; the blades push up the recirculation current and
allow the fluid to flow down more easily. The water temperature is measured with a
thermocouple inserted in the gap to correct the value of the kinematic viscosity and
thus the Taylor and Reynolds numbers. In fact, without a throughflow, we noted a
temperature rise due to viscous heating (about 20°C in 30 minutes at 1500 r.p.m. in
the case of e = 0.5cm). We also observed that the temperature appeared to be higher
at the bottom of the cell. As the inner cylinder rides on a pendular assembly, this
indicates that heating of the seals and bearings does not contribute in an appreciable
way to the temperature rise.

Two different tracers were used to observe flow patterns, using uniform illumination
provided by halogen lamps. For low rotational speeds (figure 2a), we added 2 gl~! of
Iriodin® to the water to visualize all the separatrices of the Taylor vortices (Gauthier,
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Gondret & Rabaud 1998). Above 500r.p.m., the agitation of the free surface is
sufficiently intense to generate air bubbles that are entrained downward (figure 2b)
making it possible to study the spatial and temporal properties of the turbulent flows
using visualization techniques. In the gap, the bubble size distribution is controlled
by the breakage and coalescence phenomena. Two mirrors were set up around the
working cell to observe the nature of the patterns in order to analyse the flow
configurations in the azimuthal direction.

In view of the high fluid rotation speeds, we use a high-speed linear CCD camera
(Lord Ingénierie®, type CNL 2048/Sh) that can acquire a line of 2048 pixels at
a maximum frequency of 2000 Hz (figure 2b). In practice, the camera sends data
resulting from a 3-s exposure to the RAM of a PC; the data are then written to the
hard disk. Each pixel is encoded over 8 bits (256 grey levels), and space/time diagrams
appear in tabular form to be processed and converted into images. Processing a typical
linear camera image generates a 16 MB file.

3. Results
3.1. Flow configuration

At low rotation speed (less than 500r.p.m.), we use Iriodin® particles as tracers.
In the first supercritical regimes, we are able to distinguish both inflow and outflow
boundaries (figure 2a). At higher speeds, only every other boundary is visible, probably
the one corresponding to the outer streamlines of the Taylor vortices, close to the
rotor.

When the rotational speed reaches 500 r.p.m., air bubbles give a better contrast
than Iriodin® for observing the behaviour of the vortices. However, most of the results
were drawn from space/time diagrams, using bubbles as tracers (figure 2b). Cross-
checking the axial wavelength measured using the two different tracers indicates that
bubbles are located at every other boundary. Because of their lower density, bubbles
are centrifuged inward. In order to explain why the bubble distribution is not uniform
along the inner cylinder, however, we must estimate the conditions of stability of the
bubble positions on the outflow and inflow separatrices.

The creaming velocity of a bubble, obtained by the equilibrium between buoyancy
force and Stokes drag, is

_ 2r78(p — po) (1 + 1p)
3up+ 3pp)

where r,, pp and p, are respectively the bubble radius, density and viscosity, and g
is the gravity acceleration (Landau & Lifshitz 1987). The velocity fluctuations v, and
v, are proportional to (v/e)(Ta — Ta.)"/?, where Ta. is the critical Taylor number
of the first instability (Davey, DiPrima & Stuart 1968). If the bubble is located in
an equilibrium state along the inner cylinder, at the outflow separatrix, an upward
vertical perturbation can be stable if the velocity v, directed downwards on the
separatrix is greater than the upward velocity V.. The particle thus returns to the
original equilibrium position. This occurs for

2r78(p — po)p + 1) e)2
3uu+3mw) v

where k is a constant of proportionality. The same calculation can be repeated
including the radial velocity fluctuation v,, and considering g as the centrifugal

Ve

Ta > Ta,. + <k
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FIGURE 2. (a) At low Taylor numbers, using Iriodirf® particles as tracers, all the boundaries can be
visualized. (b) Air bubbles entrained down the length of the cylinder (in both cases e = 0.5 cm).
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FIGURE 3. (a) Pressure field (7a = 152 and L/e = 12) computed with a direct numerical simulation
code based on spectral element methods (Magere et al. 1998); minima are located near the outflow
against the rotor. (b) Low rotational speed: air bubbles accumulate at every other boundary
(outflows). (c) High rotational speed: bubbles accumulate against the rotor along the outflow.

acceleration. Using the same approach, it can be shown that a bubble located on the
inflow separatrix is not in the equilibrium state. For sufficiently high Taylor number
values, the preferred bubble position is on the outflow separatrix, along the inner
cylinder.

The conditions of stability of a bubble near the centre of a roll were analysed by
Djéridi et al. (1998) and Fave (1999). They showed by the force balance on a bubble
(drag force, buoyancy force, centrifugal force induced by the Couette flow and inertial
force directed to the centre of the Taylor rolls) that the position near the centre of the
rolls is stable only at low Taylor numbers. This analysis is consistent with our results:
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at low Taylor numbers, the bubbles are captured alternately below and above the
centre, showing the alternance of wide and narrow spacing of observed bubble rings
(see next paragraph). As the Taylor number increases, the bubbles migrate towards
the inner cylinder at the outflow regions as discussed above. The ring spacing is
thus identified with the axial wavelength. Moreover, for lower Ta, a direct numerical
simulation of the single-phase Couette—Taylor flow using a spectral element method
(Magere et al. 1998) also shows that the pressure field is minimal along the outflow
against the rotor (figure 3a, Ta = 152 and L/e = 12). Because of their lower density,
air bubbles can remain there and accumulate as the rotational speed increases (figures
3b and 3c). In any event, bubble lines accurately represent the vortex patterns when
the influence of the buoyancy force is offset by the effects of the rotational speed,
allowing the bubbles to be trapped in the flow.

When the Ta/Re ratio is relatively low, the parallel ring configuration cannot
remain steady, because of merging and splitting phenomena. Such phenomena, which
are well known for Dean rolls, another centrifugal instability (Ligrani et al. 1994),
have not previously been reported for Taylor rolls. Most of the structures detected
are spirals with many spatial and temporal defects (figure 4a). As the rotational speed
increases, centrifugal effects prevail and air bubbles become organized into parallel
rings advected by the axial throughflow (figure 4b). No significant inclination angle
of the Taylor vortices has been noted. This flow configuration seems to be ideal
from a chemical engineering standpoint because it allows for accurate control of the
residence time in the reactor (figure la).

Further increasing the rotational speed implies increasing agitation of the top free
surface. Thus, spatial and temporal defects gradually invade the entire cylinder from
the top free surface, finally leading to the destruction of the vortices. On the other
hand, the influence of the entry length of the perturbation due to the lower boundary
condition (blades) remains constant whatever operational conditions (figures 4¢ and
4d). In figure 4(d), note the characteristic size of the pattern inhomogeneity, which
varies with both the Taylor and Reynolds numbers. As a consequence of this pertur-
bation, the boundaries of the Taylor vortices oscillate, resulting in overlapping and
intermixing between adjacent cells. The cell structures progressively degenerate to a
disorderly pattern. Merging and splitting phenomena dominate the whole annulus
so that the vortices cannot be easily detected (figure 4¢). This flow configuration is
observed beyond Ta > 2 x 10* in the case of e = 0.5cm and Ta > 5 x 10* when
e=1.0cm.

We also found anomalous flow configurations, revealed by high-speed linear camera
exposures. They do not dominate the flow in time and are not present in every exper-
imental run. One of these ‘non-trivial configurations’ involves very large intermittent
pulses of vortices travelling with high velocities. For example, when Ta = 6940 and
Re = 216 (e = 0.5cm), we can observe these particular flows where the vortices
descend rapidly (figure 5a). The typical duration of these pulses is between 0.9 and
1.5s but some of the data showed the existence of pulses longer than the duration
of a linear camera exposure (3s). In addition, under nearly identical conditions
(Ta = 7931, Re = 216 and ¢ = 0.5cm), we also noticed patches of upstream vortices
with nearly the same high phase velocity (figure 5b). These pulses are more frequent
beyond Re = 350. When the rotational speed increases, the duration of the pulses
which appear during a linear camera exposure decreases and it is then difficult to
distinguish them from localised defects like splitting or merging vortices. In the case
of ¢ = 0.5cm, the upstream patches occur more rarely than the downstream ones.
The number of vortices forming these pulses is generally greater in this case. On the



Turbulent Couette—Taylor bubbly flows 61

~50 cm (@) 50 ¢m (b)

~15s
(d)

~0lht
~ 3001t
~ 6001 ht
~ 8001 ht

15 25 (x10°) 35

Ta

e
>

~15s

FIGURE 4. e = 0.5cm. (a) At low Ta/Re ratios, merging and splitting of air bubble rings prevent
steady parallel ring configuration (600 r.p.m., Ta = 6555; 7001h~!, Re = 417). (b) At higher Taylor
numbers, parallel and independent rings can be seen being advected by the axial throughflow. Note
that the amount of air entrained downward is more significant as the agitation of the top free surface
increases. Air bubble sizes also decrease because of turbulent shearing (1200r.p.m., 7a = 12194;
4001h~", Re = 221). (c) At very high Taylor numbers, spatio-temporal defects dominate the flow,
leading to the destruction of Taylor vortices (2200r.p.m., Ta = 25776; 7001h~!, Re = 191). (d)
Influence of the boundary conditions. The distance between lines of the same symbol is the effective
length of the Couette-Taylor region where Taylor vortices can be clearly discriminated (see for
example an image for Re = 300).

other hand, when e = 1.0 cm, the upstream patches are much more frequent than the
downstream ones. The origins of these intermittent anomalous patches of patterns
are not obvious. Nevertheless, we noticed that the inception of these spatial and
temporal defects is generally preceded by high-amplitude fluctuations of the vortex
boundaries.

The existence of these intermittent and random pulses of the full pattern modifies
the existing conceptual scope of models for mass transfer, where the roll patterns are
considered as series of constant numbers of chemical reactors.
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FIGURE 5. (a) Faster downstream waves (dashed line). This anomalous pulse of vortices travels
with higher velocity than the mean axial wave propagation (solid line) (e = 0.5cm, 700 r.p.m.,
Ta = 6940; 4001h~!, Re = 216). (b) Upstream waves (dashed line). Despite the fact that these
operational conditions are very similar (e = 0.5cm, 800r.p.m., 7a = 7931; 4001h~', Re = 216), the
flow configurations are different.

3.2. Flow pattern characteristics
3.2.1. Axial wavelength

In the case of ¢ = 0.5cm we performed 180 measurements with Taylor numbers
between 40 and 3.5 x 10* and axial Reynolds numbers between 0 and 560 using
at the same time images and space/time diagrams obtained with the linear CCD
camera. When e = 1 cm, the number of measurements was 168 with Ta € [40 ; 10°]
and Re € [0; 590].

We define the ‘effective’ wavelength of the Taylor cells as follows:

effective length of the Couette—Taylor region
i — .
number of outflow boundaries

where the effective length of the Couette—Taylor region is presented in figure 4(d). This
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FIGURE 6. Axial wavelength of the vortices. 4 is the height of a pair of vortices, e is the annular gap.

definition of the wavelength makes special provision for end effects or end boundary
conditions. In practice, in most of the experiments, we can only count every other
boundary (outflow boundaries) where air bubbles accumulate.

According to linear theory, just above the first bifurcation, the critical wavelength
is 2e. We observe a rapid increase in the axial wavelength when the Taylor number
increases (figures 3¢ and 6). Without a throughflow, 1/2¢ reaches its maximum value
of 2.8 in the range of Taylor numbers from 5 x 10° to 10* High rotation speeds
seem to stretch vortices vertically. Next, the value tends to decrease slowly to 1.7 at
Ta = 5.1 x 10*. Spatial and temporal defects dominate the flow (above Ta = 3.5 x 10*
in the case of e = 0.5cm and 7a = 5.1 x 10* when e = 1.0 cm), inducing the destruction
of the vortices.

With a superimposed axial flow, we observed the same trend despite the fact that the
maximum values of 4 did not exceed 2.3, whatever the value of the throughput from
300 to 9001 h~!. Also, destruction of the vortices occurred sooner, above Ta = 2.4 x 10*
when e = 0.5c¢cm and Ta = 4.6 x 10* when e = 1.0cm. Therefore, an axial flow tends
to squeeze cells vertically. As observed by Kaye & Elgar (1958) and Astill (1964), it
also stabilizes the flow, as the first regular vortices appear later when the throughput
increases.

Like Djéridi et al. (1998), in the vicinity of Ta = 3 x 10° and without throughflow,
we also noted a particular axial wavelength pattern consisting of one large vortex
and one small one.

3.2.2. Phase velocities

The vortex axial displacement velocities were calculated by measuring slopes on
space/time diagrams. For the mean dimensionless axial phase velocity V/V,, we
measured values around 0.9 regardless of the throughput (figure 7) in a wide region
of the experimental parameters, which is less than the value of 1.1 to 1.2 usually
found at lower Ta and Re and without a top free surface (Snyder 1962; Lueptow et
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FIGURE 7. Axial phase velocities of the mean flow. V is the velocity of the axial displacement of
the vortices, V,, is the mean axial velocity (ratio of throughput to gap cross-section).
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to the faster downstream waves, while negative values are related to the upstream waves.

al. 1992; Piva et al. 1997; Wereley & Lueptow 1999). For higher Taylor and lower
Reynolds numbers, we noticed an increase of V/V,,.

For the secondary axial wave propagation described above, we found much higher
phase velocity values. In figure 8, we have indicated for several axial throughputs the
dimensionless phase velocity of such waves v/V,, versus Taylor numbers from 5 x 10
to 3.6 x 10*. We noticed first that the velocity of the downstream or upstream waves
decreases with rising throughput. In addition, for a given throughput, we observed an
increase in the phase velocity with the rotational speed. This increase tends to be less
significant when the intensity of the throughput increases.
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FIGURE 9. (a) Case of e = 0.5cm: operating conditions where an ideal flow configuration can be
expected (dots, region A). In region B, the Ta/Re ratio is too low and ordered patterns cannot
be found. In region C, the gap is often invaded by defects (merging and splitting phenomena).
For the downstream vortices travelling with high phase velocity, triangles indicate the experimental
situations where pulses composed of 8 (or more) vortices appear. In region D, this phenomenon
is particularly frequent. In the case of the upstream vortices, situations corresponding to pulses
composed of 6 (or more) vortices are indicated with squares; they are more frequent in region E.
(b) Case of e = 1.0cm: corresponding regions described above are reported using the same letters
(primed) and symbols.

4. Discussion and conclusion

According to these results, when e = 0.5 cm, the ideal flow configuration presented
in figures 1(a) and 4(bh) can be found in the region of the Taylor/Reynolds number
map roughly defined by Ta € [10*; 1.7 x 10*] and Re € [0; 400]. In figure 9(a),
the circles (region A) denote experimental situations without secondary patches
(upstream or downstream pulses are very uncommon here). In the case of ¢ = 1.0 cm,
the corresponding ranges are defined by Ta € [1.6 x 10* ; 4.3 x 10*] and Re € [0 ; 400]
(region A, figure 9b).

When the intensity of the throughflow is high compared with the rotational speed
of the inner cylinder, the Taylor vortices are not fully developed. Thus, as reported
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by other researchers (Gu & Fahidy 1985), the Ta/Re ratio is an accurate parameter
defining the beginning of the ‘ideal working zone’ of such a chemical reactor. When
Ta/Re is too low, we cannot find ordered patterns within the flows (see regions B and
B’ in figure 9a, b).

However, when the Taylor number is too high, this ratio is no longer appropriate.
In such conditions, the cell is often invaded by defects (figure 4c). In regions C
(Ta > 2 x 10*) and C' (Ta > 5 x 10%), the flow states correspond to experimental
situations in which we can observe a considerable number of such defects. These
particular patterns probably enhance the mixing between vortices because of splitting
and merging phenomena related to the inception of these defects.

Considering the pulses of vortices travelling with high phase velocity, we noticed
two different behaviours of the flow according to the size of the gap. In the case
of e = 0.5cm, we show with triangles the experimental situations where we found
pulses composed of 8 (or more) downstream vortices. In region D of figure 9(a), this
phenomenon is particularly frequent. In the case of the upstream vortices, situations
corresponding to pulses composed of 6 (or more) vortices are indicated with squares;
they are more frequent in region E. When e = 1.0cm, the downstream vortices
are particularly uncommon. Some of them were observed when Tu ~ 2 x 10* and
Re =~ 400. In the other hand, the patches of upstream vortices are widely observed in
region E’ of figure 9(b).

This behaviour is like an absolute instability with upstream and downstream
propagating fronts. Given a rotational velocity, the upper free surface is more agitated
when the gap is smaller. In this case, the intense perturbation of the upper boundary
favours the generation of downstream patches of vortices travelling with high phase
velocity. When e = 1.0 cm, the influence of the free surface is less important and the
upstream pulses are commonly observed. These upstream propagating patterns appear
to be similar to the turbulent pulses observed by Deissler & Brand (1995). As these
authors showed in numerical simulations of the quintic complex Ginzburg—Landau
model for travelling patterns, the intrinsic dynamics related to the nonlinear coupling
excite propagating localized states (pulses) capable of travelling in the upstream
direction. This characteristic seems to be a general phenomenon but can be partially
hidden by the influence of the boundary conditions (the agitation of the free surface
in this case).

When e = 1.0cm, on increasing the Taylor and Reynolds numbers (respectively
Ta € [2.7 x 10*; 4.5 x 10*] and Re ~ 590) the high-speed linear camera exposures
revealed another region where the ideal flow configuration is noticed. The intensity
of the throughput and high velocities of the inner cylinder seem to prevent the
development of upstream pulses and to favour classic travelling Taylor vortices.

For chemical engineering purposes (chemical reactor), a prototype working in
regions A and A’ of the Taylor/Reynolds number map would allow good control
of the residence time of chemical components within the flow. The Taylor vortices,
corresponding to the well-mixed batch reactors, travel across the reactor with a
dimensionless axial velocity close to 0.9. Compared with the ‘ideal zone’ described
by Kataoka et al. (1975), this set of parameters ensures the correct dispersion of
one liquid phase into the other one due to the intense shearing taking place in the
gap. Moreover, previous work on this Couette device (Tison 1996) showed that under
these conditions it was possible, from two immiscible liquids, to generate an emulsion
composed of 200 pm diameter droplets.

In any event, the complexity of the turbulent spatial and temporal behaviour places
a limitation on the classical consideration of this instability as an ideal mixing reactor,



Turbulent Couette—Taylor bubbly flows 67

and this first observation of the anomalous patches of travelling patterns modifies
the previous simple view of the Couette—Taylor reactor.

In addition, work is in progress to study the dynamics of migration in a dispersed
liquid-liquid system (aqueous and organic phases) in order to show the importance
of the Laplacian operator of pressure in this transport mechanism (A. Babiano & O.
Piro 1999, personal communication).
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